The Human Brain Project Goals

Tuesday, January 22, 2013

Human Brain Project

 Cognitive Neuroscience
In October, the Human Brain Project released their submission to the European Flagship program for extensive and long-term funding.  The goals of the project are not only to reverse engineer the human brain, but to apply their findings to the creation of new brain-based computational models.
Understanding the human brain is one of the greatest challenges facing 21st century science. Potentially profound insights into what makes us human, the development of new treatments for brain diseases and revolutionary new computing technologies may be results of reverse engineering the human brain. According to the Human Brain Project, modern computing technology has brought these goals within sight.

Neuroscience is generating exponentially growing volumes of data and knowledge on specific aspects of the healthy and diseased brain, in different species, at different ages. Despite these incredible advances, we do not have a unified understanding of the brain that can span its multiple levels of organisation, from genes to cognition and behavior.

The lack of such a framework is a huge obstacle for pharmaceutical companies trying to develop drugs for brain diseases. It also explains why neuroscience has yet to significantly impact computational models.

Scientists have been researching isolated aspects of the brain for more than a century but despite  progress, it has become obvious that it will take another century or more before we can measure every gene, protein, cell, synapse and circuit in the brain, in all possible conditions and species, at every possible age, in every possible disease.


An alternative strategy, put forward by Dr. Henry Markram and the team at the Human Brain Project is to identify data that absolutely has to be measured experimentally, and to predict the rest from what we already know. This requires a focused plan to integrate and exploit the massive volumes of data and knowledge we already have and the deluge of new data coming from labs all over the world.

This will require the development of radically new information and computer technology (ICT): new supercomputing technologies to federate and manage the data, to integrate it in computer models and simulations of the brain, to identify patterns and organisational principles that only appear when the data is put together, and to identify gaps to be filled by new experiments.

The Human Brain Project’s first goal is to build an integrated system of six ICT-based research platforms, providing neuroscientists, medical researchers and technology developers with access to highly innovative tools and services that can radically accelerate the pace of their research.

These will include a Neuroinformatics Platform, that links to other international initiatives, bringing together data and knowledge from neuroscientists around the world and making it available to the scientific community; a Brain Simulation Platform, that integrates this information in unifying computer models, making it possible to identify missing data, and allowing in silico experiments, impossible in the lab; a High Performance Computing Platform that provides the interactive supercomputing technology neuroscientists need for data-intensive modeling and simulations; a Medical Informatics Platform that federates clinical data from around the world, providing researchers with new mathematical tools to search for biological signatures of disease; a Neuromorphic Computing Platform that makes it possible to translate brain models into a new class of hardware devices and to test their applications; a Neurorobotics Platform, allowing neuroscience and industry researchers to experiment with virtual robots controlled by brain models developed in the project.

Human Brain Project

The platforms are all based on previous pioneering work by team's partners and will be available for internal testing within eighteen months of the start of the project.

The second goal of the project is to trigger and drive a global, collaborative effort that uses the platforms to address fundamental issues in future neuroscience, future medicine and future computing.

The end result will be not just a new understanding of the brain but transformational new computer technology. As modern computers exploit ever-higher numbers of parallel computing elements, they face a power wall: power consumption rises with the number of processors, potentially to unsustainable levels. Contrasting this, the brain manages billions of processing units connected via kilometres of fibres and trillions of synapses, while consuming no more power than a light bulb.

Understanding how the human brain does this – the way it computes reliably with unreliable elements, the way the different elements of the brain communicate – can provide the key not only to a completely new category of hardware, the Neuromorphic Computing Systems, but to a paradigm shift for computing as a whole, moving away from current models of “bit precise” computing towards new techniques that exploit the stochastic behavior of simple, very fast, low-power computing devices embedded in intensely recursive architectures. According to the Human Brain Project, the economic and industrial impact of such a shift is potentially enormous.

Overall, the goal of the Human Brain Project is to build a completely new computational infrastructure for future neuroscience, future medicine and future computing that will catalyze a global collaborative effort to understand the human brain and its diseases and ultimately to emulate its computational capabilities.

SOURCE  Human Brain Project

By 33rd SquareSubscribe to 33rd Square