}#PageList1 {margin-bottom:0px} .content-outer { -webkit-box-shadow:none; box-shadow:none; } #ContactForm1 { display: none ! important; } -->

December 13, 2013

Machine Learning Could Allow Intelligent Chemical Reactions



Probablistic Model

 Bioengineering
Using nature as a guide, researchers from Harvard University have found that a new class of artificial intelligence algorithms may be conducted using chemical reactions.  The theory could open up a new way of producing smart drugs and molecular machines.




Computer scientists at the Harvard School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering at Harvard University have joined forces to put powerful artificial intelligence reasoning algorithms in the hands of bioengineers.

Ryan P. Adams and Nils Napp presented a paper at the Neural Information Processing Systems (NIPS) conference,  demonstrating that an important class of artificial intelligence algorithms could be implemented using chemical reactions.

These algorithms, which use a technique called "message passing inference on factor graphs," are a mathematical coupling of ideas from graph theory and probability. They represent the state of the art in machine learning and are already critical components of everyday tools ranging from search engines and fraud detection to error correction in mobile phones.

Adams' and Napp's work demonstrates that some aspects of AI could be implemented at microscopic scales using molecules. In the long term, the researchers say, such theoretical developments could open the door for "smart drugs" that can automatically detect, diagnose, and treat a variety of diseases using a cocktail of chemicals that can perform AI-type reasoning.

Related articles
"We understand a lot about building AI systems that can learn and adapt at macroscopic scales; these algorithms live behind the scenes in many of the devices we interact with every day," says Adams, an assistant professor of computer science at SEAS whose Intelligent Probabilistic Systems group focuses on machine learning and computational statistics.

"This work shows that it is possible to also build intelligent machines at tiny scales, without needing anything that looks like a regular computer. This kind of chemical-based AI will be necessary for constructing therapies that sense and adapt to their environment. The hope is to eventually have drugs that can specialize themselves to your personal chemistry and can diagnose or treat a range of pathologies."

Adams and Napp designed a tool that can take probabilistic representations of unknowns in the world (probabilistic graphical models, in the language of machine learning) and compile them into a set of chemical reactions that estimate quantities that cannot be observed directly. The key insight is that the dynamics of chemical reactions map directly onto the two types of computational steps that computer scientists would normally perform in silico to achieve the same end.

Just like robots, biological cells must estimate external environmental states and act on them; designing artificial systems that perform these tasks could give scientists a better understanding of how such problems might be solved on a molecular level inside living systems.

"There is much ongoing research to develop chemical computational devices," says Napp, a postdoctoral fellow at the Wyss Institute, working on the Bioinspired Robotics platform, and a member of the Self-organizing Systems Research group at SEAS. Both groups are led by Radhika Nagpal, the Fred Kavli Professor of Computer Science at SEAS and a Wyss core faculty member. At the Wyss Institute, a portion of Napp's research involves developing new types of robotic devices that move and adapt like living creatures.

"What makes this project different is that, instead of aiming for general computation, we focused on efficiently translating particular algorithms that have been successful at solving difficult problems in areas like robotics into molecular descriptions," Napp explains. "For example, these algorithms allow today's robots to make complex decisions and reliably use noisy sensors. It is really exciting to think about what these tools might be able to do for building better molecular machines."

Indeed, the field of machine learning is revolutionizing many areas of science and engineering. The ability to extract useful insights from vast amounts of weak and incomplete information is not only fueling the current interest in "big data," but has also enabled rapid progress in more traditional disciplines such as computer vision, estimation, and robotics, where data are available but difficult to interpret. Bioengineers often face similar challenges, as many molecular pathways are still poorly characterized and available data are corrupted by random noise.

"Probabilistic graphical models are particularly efficient tools for computing estimates of unobserved phenomena," says Adams. "It's very exciting to find that these tools map so well to the world of cell biology."


SOURCE  Phys.Org

By 33rd SquareSubscribe to 33rd Square

No comments :

Post a Comment

Thank you for your comment!

 
The Story of the Chessboard


The classic parable of how the inventor of the game of chess used his knowledge of exponential growth to trick an emperor is commonly used to explain the staggering and accelerating growth of technology. The 33rd square on the chessboards represents the first step into the second half of the chessboard, where exponential growth takes off.

33rd Square explores technological progress in AI, robotics, genomics, neuroscience, nanotechnology, art, design and the future as humanity encroaches on The Singularity.











Copyright 2012-2014 33rd Square | Privacy Policy | RSS | News | Submit an Article | Link to Us | Store | About Us | Contact Us