}#PageList1 {margin-bottom:0px} .content-outer { -webkit-box-shadow:none; box-shadow:none; } #ContactForm1 { display: none ! important; } -->

July 10, 2013

Superman Memory Crystals Created



Superman Memory Crystals Created

 Data Storage
Scientists have developed a new 'Superman memory crystals' that could store vast quantities of information — 360 TB on a disc, about 100 times more than current disk drives — for more than a million years.




By using nanostructured glass, scientists at the University of Southampton have, for the first time, experimentally demonstrated the recording and retrieval processes of five dimensional digital data by femtosecond laser writing. The storage allows unprecedented parameters including 360 TB/disc data capacity, thermal stability up to 1000°C and practically unlimited lifetime.

Called as the ‘Superman’ memory crystal’, as the glass memory has been compared to the “memory crystals” used in the Superman films, the data is recorded via self-assembled nanostructures created in fused quartz, which is able to store vast quantities of data for over a million years. The information encoding is realised in five dimensions: the size and orientation in addition to the three dimensional position of these nanostructures.

5D Data Storage  by Ultrafast Laser Nanostructuring in Glass


Related articles
The work improves on prototype crystal storage created by Hitachi that was announced earlier this year. This current work was done in the framework of EU project Femtoprint.

The goal of Femtoprint is to develop a printer for microsystems with nanoscale features fabricated out of glass. Recent researches have shown that one can form three-dimensional patterns in glass material using low-power femtosecond laser beam. This simple process opens interesting new opportunities for a broad variety of microsystems with feature sizes down to the nano-scale.

These patterns can be used to form integrated optics components or be ‘developed’ by chemically etching to form three-dimensional structures like fluidic channels and micro-mechanical components. Worth noticing, sub-micron resolution can be achieved and sub-pattern smaller than the laser wavelength can be formed. 

Due to the low-energy required to pattern the glass, femtosecond laser systems consisting simply of an oscillator are sufficient to produce such micro- and nano- systems.

A 300 kb digital copy of a text file was successfully recorded in 5D using ultrafast laser, producing extremely short and intense pulses of light. The file is written in three layers of nanostructured dots separated by five micrometres (one millionth of a metre).

The self-assembled nanostructures change the way light travels through glass, modifying polarisation of light that can then be read by combination of optical microscope and a polariser, similar to that found in Polaroid sunglasses.

The research is led by Jingyu Zhang from the University’s Optoelectronics Research Centre (ORC) and conducted under a joint project with Eindhoven University of Technology.

“We are developing a very stable and safe form of portable memory using glass, which could be highly useful for organisations with big archives. At the moment companies have to back up their archives every five to ten years because hard-drive memory has a relatively short lifespan,” says Jingyu.

Like many technological leaps, the researchers are modest with future applications.  “Museums who want to preserve information or places like the national archives where they have huge numbers of documents, would really benefit.”

The Physical Optics group from the ORC presented their breakthrough paper at the photonics industry's renowned Conference on Lasers and Electro-Optics (CLEO’13) in San Jose. The paper, ‘5D Data Storage by Ultrafast Laser Nanostructuring in Glass’ was presented by the during CLEO's prestigious post deadline session.

SOURCE  University of Southampton

By 33rd SquareSubscribe to 33rd Square

No comments :

 
The Story of the Chessboard


The classic parable of how the inventor of the game of chess used his knowledge of exponential growth to trick an emperor is commonly used to explain the staggering and accelerating growth of technology. The 33rd square on the chessboards represents the first step into the second half of the chessboard, where exponential growth takes off.

33rd Square explores technological progress in AI, robotics, genomics, neuroscience, nanotechnology, art, design and the future as humanity encroaches on The Singularity.











Copyright 2012-2014 33rd Square | Privacy Policy | RSS | News | Submit an Article | Link to Us | Store | About Us | Contact Us