}#PageList1 {margin-bottom:0px} .content-outer { -webkit-box-shadow:none; box-shadow:none; } -->

April 20, 2012

Transplanted Photoreceptor Cells Restore Vision In Mice




 Medicine
Researchers have found that transplanting the light-sensitive nerve cells that line the back of the eye, could form the basis of a new treatment to restore sight in people with degenerative eye diseases.  They have tested the procedure with mice and the findings could have implications for treating humans in the future.
Scientists from the UCL Institute of Ophthalmology have shown for the first time that transplanting light-sensitive photoreceptors into the eyes of visually impaired mice can restore their vision.
The research, published in Nature, suggests that transplanting photoreceptors, light-sensitive nerve cells that line the back of the eye, could form the basis of a new treatment to restore sight in people with degenerative eye diseases.
Scientists injected cells from young healthy mice directly into the retinas of adult mice that lacked functional rod-photoreceptors. Loss of photoreceptors is the cause of blindness in many human eye diseases including age-related macular degeneration, retinitis pigmentosa, and diabetes-related blindness.
There are two types of photoreceptor in the eye: rods and cones. The cells transplanted were immature (or progenitor) rod-photoreceptor cells. Rod cells are especially important for seeing in the dark as they are extremely sensitive to even low levels of light.Almost-normal rod vision achieved
After four to six weeks, the transplanted cells appeared to be functioning almost as well as normal rod-photoreceptor cells and had formed the connections needed to transmit visual information to the brain.
The researchers also tested the vision of the treated mice in a dimly lit maze. Those mice with newly transplanted rod cells were able to use a visual cue to quickly find a hidden platform in the maze whereas untreated mice were able to find the hidden platform only by chance after extensive exploration of the maze.
Professor Robin Ali at UCL Institute of Ophthalmology, who led the research, said: “We’ve shown for the first time that transplanted photoreceptor cells can integrate successfully with the existing retinal circuitry and truly improve vision. We’re hopeful that we will soon be able to replicate this success with photoreceptors derived from embryonic stem cells and eventually to develop human trials.
Ali, M.D., and colleagues admit far more work will be needed before this approach can be translated into the clinic. However, they conclude, their results “demonstrate for the first time that transplanted rod-photoreceptor precursors can integrate into a dysfunctional adult retina and, by directly connecting with the host retinal circuitry, truly improve vision.” Their published paper is titled “Restoration of vision after transplantation of photoreceptors.”
“Although there are many more steps before this approach will be available to patients, it could lead to treatments for thousands of people who have lost their sight through degenerative eye disorders. The findings also pave the way for techniques to repair the central nervous system as they demonstrate the brain’s amazing ability to connect with newly transplanted neurons.”
Cone vision next
Dr Rachael Pearson from UCL Institute of Ophthalmology and principal author, said: “We are now finding ways to improve the efficiency of cone photoreceptor transplantation and to increase the effectiveness of transplantation in very degenerate retina. We will probably need to do both in order to develop effective treatments for patients.”
The researchers demonstrated previously, in another study published in Nature, that it is possible to transplant photoreceptor cells into an adult mouse retina, provided the cells from the donor mouse are at a specific stage of development — when the retina is almost, but not fully, formed. In this study they optimized the rod transplantation procedure to increase the number of cells integrated into the recipient mice and so were able to restore vision.


SOURCE  KurzweilAI.net


By 33rd SquareSubscribe to 33rd Square



No comments :

 
The Story of the Chessboard


The classic parable of how the inventor of the game of chess used his knowledge of exponential growth to trick an emperor is commonly used to explain the staggering and accelerating growth of technology. The 33rd square on the chessboards represents the first step into the second half of the chessboard, where exponential growth takes off.

33rd Square explores technological progress in AI, robotics, genomics, neuroscience, nanotechnology, art, design and the future as humanity encroaches on The Singularity.











Copyright 2012-2014 33rd Square | Privacy Policy | RSS | News | Submit an Article | Link to Us | Store | About Us